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BUCKLING OF A VISCOELASTIC BAR
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The behavior of a bar with pin-jointed fixing, having an initial
deflection, is investigated when a compressive force remaining con-
stant with time is applied fairly rapidly to the ends of the bar, It is
assumed that the material of the bar is such that at the instant of load~
ing the entire bar is in an elastic state, Subsequently, the strain of
steady state creep is added to the elastic strains, for stress that exceed
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a certain value. Such a scheme is well confirmed experimentally, for
example, in the testsby Wood, Williams, Hodge and Ogden oncopper-
beryllium wire at slightly elevated temperatures and high stresses [1].
The investigation carried out here is directly related to the solution of
the buckling problem of a viscoelastic ideally-plastic bar [2].

§1. We investigate the buckling process under creep conditions of
a bar of length I, with pin-jointed fixing; the bar has an initial distor-
tion and is compressed by a constant force P. To simplify the calcula-
tions, we assume that the bar has a rectangular cross section of the
width b and height 2h. The deflection of the bar is approximated by a
single sinusoidal half-wave, and the equation of equilibrium issatisfied
at the center point. We assume that the stresses 0, and £; are connected
as follows:

Eey =6 (ler]<<o,)s

dey . doy

o = ar TBE(aj—gysignar (&l>s). (1D

Here E is Young's modulus, oy is the static yield point and B is
the creep characteristic, The compressive stresses and strains are taken
as positive. If the application of the forces is such that in certain fi-
bers {o0;| >0, , then with time the stresses can be redistributed over
the cross section of the bar. At the same time the boundary (or two
boundaries) between the elastic and viscoelastic zones is displaced.

The equations of equilibrium for the bar have the form

P:‘gdyds, — P (a - ag) =‘gslz1dz, ,
5 5

where S is the cross-sectional area, zg is the coordinate, measured
from the neutral axis, along the cross section S in the plane of flex-
ure, ago is initial flexure in the middle of the bar, and a(t) is the in-
crement of flexure. We adopt the hypothesis of plane sections:
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where &g, is the strain of the neutral axis. We introduce the dimen-
sionless parameters
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Then the equations of equilibrium and the hypothesis of plane
sections assume the form

1

2B = S cdz,

—1

1
— 2B (w4 uoo) = Sczdz, (1.2)
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§ 2, Let us investigate the elastic~ideally-plastic state of a bar in
compression. We consider a bar made of elastic-ideally-plastic mate-
rial (with a static yield point) compressed by the force 28. The exact
solution of this problem is given in [3]; here we use an approximate
solution in a form which is convenient for the investigation. First we
consider the case where only the plastic zone is present in the cross

section. Then
('—1 <z by),

g =Yy <
c=1g,—3uz (5 <z<1). (2.1)

Substituting Egs. (2. 1) into Egs. (1.2), we obtain

(b1 +2) 4 )
uoo=[_33‘ T IA—by (y—8. (2.29)
Putting by = —1 we obtain the following relation between the
parameters 8, y and the initial deflection, uqg, corresponding to the
instant when plasticity appears on the concave side of the bar
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Subsequently, as B increases for ug, <C (3k'/ ', where B is deter-
mined from the condition {4 — Byx”) y = By, a failure corresponding

‘to the condition aff / du = 0 takes place. Hence we obtain

1/ 3 T\
m=fQ——;— : (2.4)
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We note that Bg is the boundary between two regions; in the first
region the limiting state sets in if there is a single plastic region in
the cross section; in the second it occurs for two regions. In the case

where ug > Py*, for 8 satisfying the relation
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plasticity appears on the convex side of the bar, As 8 increases further,
two plastic regions divided by an elastic core appear in the cross sec-
tion. For loads larger than those given by the relation (2. 5), the elas-
tic core in the bar is encircled from both sides by the plastic zones.
In this case

o=y (—~1<z<b),
o=, —3uz (b < 5 < by)
o= —7v (hy<z<1), (2.6)

Substituting Eqs. (2. 6) into Egs. (1.2), we obtain

¥ 8 P
W‘FT—T—F%(uTuon):O. (2.7
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Using the condition 4/ 6w = 0 we can find the load for which
failure takes place

wop = (AB(1—B") 2.8)
B

§3. Let us consider the buckling process of a bar when there is a
single viscous region in the cross section.

Before going to investigate this case we must point out that, with=
in the framework of the hypotheses adopted about the properties of the
material, a certain region of loads exists for any ugg such that in the
initial (elastic) stress distribution |o| << ¥ holds everywhere. Conse-
quently, zones of viscous flow do not appear and the deflections do not
vary with time for this load.

We consider the case where this limit is passed. We then assume
that the stress distribution in the cross section, for t = 0, satisfies the
inequality o >y for —1 <z <<% and lo|<<v for ¢ < z << 1. When
-1 < z < ¢y the relation of viscoelasticity is satisfied for all £ = 0.

In the second zone ¢, < z < ¢, where c is the moving boundary be-
tween the elastic and viscoelastic zones and ¢ {¢) = y , creep strains
occur for ¢ >7 (z) , where 7(z) is the instant when c(t) passes through
the point z. In the third Zone ¢ < z < 1 only elastic strains occur for
t=0.

We rewrite the differential relation &' = o'+ ¢ — v in integral
form (a derivative with respect to t is denoted by a dot), We obtain

s=e—et\eeldt Lyl e (—1<<z<< o)

1

c=gc—et\eefdt Lyl —e"h
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(3.1)

From the condition ¢ (¢) = y we have &, =y -+ 3uc, To de~
termine the functions ¢ and u we ingert the expression (3.1) into the
equation of equilibrium (1.2). To transform the integral relations into
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differential ones we multiply them by el, differentiate and then divide
them by ef. As a result, we obtain the system of two first order differ-

ential equations:

(¢ — co) Buoo
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The subsequent analysis of the qualitative features of the be-
havior of the bar in question (for a constant ) is carried out with the
use of a phase diagram B ~ ugo. The phase diagram has two different
basic forms, Fig. 1 corresponds to the case y < 1; Fig. 2 corresponds
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to the case y > 1. The curve 1 in both figures is given by the relation
(2.3). It cuts off the region A containing no viscous flow. Consequent-
ly, here the bar behaves as ideally elastic.

The curve 2 before contacting the curves 3 and 4 is given by
Eq. (2. 5). It is easy to show that points of the curve 2 cormrespond to
a state of the bar for which o (1) ->—vy for ¢— cc. The curve 3 is
determined by the relation (2. 4).
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The relations (3. 2) are always operative in the region B bounded
by these curves, The stress diagram for the region B, for any ti, is such
that ¢ > — y everywhere. In this case we have the limiting state for
t - oo ; it is characterized by the condition ' = ¢' = 0.

Using this condition, from (3.2) we find the equation for the

limiting value C 4t
3Puge (1 — 65)* =

=UU—-P—U+ @Iy —B) - (3.3

it is easy to show that Eq. (3.3) coincides with Eq. (2.2) when
Co is replaced by bs. The value u,, can be found from the second Eq.
(8.2), if we put u* = 0. Consequently, the bar is asymptotically stable
in the region B. At the same time a certain viscous flow takes place,
transforming the bar from the purely elastic state into the limiting
elastic~ideally -plastic state after infinitely long time. The region B
fully occupies the part of the phase diagram where the relations (3. 2)
are true for any t.

Points lying above the curves 2 and 3 are characterized by the
fact that at a certain instant t = ty (ty can be zero) a viscous region
appears on the convex side of the bar. Points lying above the curve &
correspond to the case ty = 0. The relations (3. 2) are true for points of
the regions E and C for t < ;. The value of the time ¢y is determined
from the condition o (1, 1) = —Y.

§ 4. Let us consider the second basic case, when viscous regions
with stresses of different signs develop on both sides of the bar, with
the boundaries ¢ and d on the concave and convex side respectively.
Transforming Eqs. (1.1) into integral form, we have

ge=g—et\eeldt +7(1—elY (—1<z2<K ),
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st—e"tS geldt —y(1—et™)  (o<<z<<). (4.1
f
In addition, for ¢ and d we can easily obtain the relation
Su(d—e) =2y . (4.2
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For the determination of the functions u, ¢ and d we have Eqgs.
(4.1), (4.2) and the equation of equilibrium (1. 2). These equations
are reduced to the two equations for ¢ and d:

. Be (d—c) 2R
¢ =y TRy ) %
X(1_B)-——§—§?i—|—36—cd2—czd——cs],
. M (d—o) [/28
“=—q=p 4(1—B>[(w“"’”°)x
% (1_;3)~£B‘frﬂi+3d_cd2-—c2d_d3]. (4.3)

The initial conditions for the system (4. 3) can have two forms.
If the point in the phase diagram lies in the regions F and D, then
= 0 and

1—3E6—m

(t—p@+n
3Bugo ' .

¢ = 3Bue

d(0)= 4.4)
If the point is located in the regions E and C, the Egs. (4.3)

hold for t > t; and the initial values for ¢ are determined from the
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solution of the system (3. 2) for t = ty, whereas d(t) = 1 is determined
by the definition.

Let us consider the regions C and D in the phase diagram. Both
these regions are characterized by the fact that for ugy and 8 belong-
ing to these regions we have a certain finite limiting value for ¢, d
and u for t = . This arises from the existence of the limiting values
(4. 3) for the condition ¢* = d° = 0 and for ¢ = d. It is easy to show
that the limiting valuesforc, d anducoincide with the corresponding
parameters when the elastic ~ideally ~plastic problem is solved. Con-
sequently, the regions C and Dare alsoregions of asymptotic stability.
The curves 3 and 4 (the curve 4 is given by the relation (2. 8)) separate
the regions of stability from the regions where the deflection increases
without bounds with time (for t = = ). This conclusion follows from
the analysis of Egs. (4.3) with Egs. (4. 2) taken into account. We also
note that this boundary coincides with the boundary corresponding to
the condition 6B/ du= 0 in the elastic-ideally-plastic scheme of
behavior of the material,

In the region E we have t; > 0, and in the region F we have
ty = 0. In these regions we have boundless increase of the deflection
u fort = %, For sufficiently long times, u increases with time ex~
ponentially as for a linearly viscoelastic bar. Consequently, an actual
bar can work in the regions E and F for only a limited time (for ex-
ample, for given conditions imposed on the deflections), The regions
E and F are divided by the curve 5 which is determined from the con-
dition o (1, 0) = —y .

In the case when ¥ < 1 we have an additional region G in the
phase diagram. It is characterized by the fact that at the initial in-
stant o > y everywhere, and the viscous flow envelops the entire cross
section of the bar. Using the condition o(1) = y in the elastic solution,
we obtain the equation of the cuive 6;

uo = S BB B;éf = “.5)

For a bar with ug and 8 in the region G, the relation between
u and t for small t has the form

vy e g 1) 8

The 1elation (4. 6) is operative for t =< tp; here tp is determined
from the condition o(1,tp) =y. Whent > tp, an elastic zone appears
on the convex side of the bar and an equation of the type (3. 2) be~
comes operative. When t = t, the condition o(1,ty) = —y is satisfied.
When ¢>> 3, a system of the type (4.3) becomes decisive, and for
t = , for any ug, == 0 of this region, u - *«, The systems of non=
linear equations (3. 2) and (4. 3) can be solved only numerically. These
systems are solved on a digital computer Nairi for a number of more
characteristic values of the parameters y, 8 and uge. In Fig. 3 con-
tinuous lines represent the calculated curves u(t) for the following
cases:

index 1 denotes the curve for y = 1.5, = 0.25, uyo = 1.8;

index 2 denotes the curve for y = 0.2, = 0.1, ugp=1.

For comparison purposes we have shown on the same graph, by
dotted lines, the curves u(t) for the conditiony = 0 (purely viscoelas-
tic bar). It is seen that even in the case where the limiting state is
absent, but the point in the phase diagram is close to the region of
asymptotic stability, the calculated curves sharply diverge from the
curves for the purely viscoelastic bar, At the same time (curve 1,
for example), for the initial portion of t, the deflection u increases
very slowly (nearly linearly with time). This is in contrast to the vis~
coelastic bar.

The variation with time of the stress diagram over the cross
section of the bar is of interest. As one of the more interesting cases,
in Fig. 4 we have shown the dynamics of the variation of the ¢ dia~
gram for the casey = 1.5, 8= 0.25, upy = 1.8 (the numbers on the
right and left denote the corresponding dimensionless time). From the
graph (also obtained numerically on the computer Nairi) it follows that
the initial linear (elastic for t = 0) stress distribution for small t tends
to the elastic~ideally~-plastic case. The "relaxation” effects prevail
during this period.

The bending moment increases with the subsequent growth of
the deflections, and the stress distribution again tends to be linear
over the cross section, with the exception of the breaks on the bounda-
ries between the elastic and viscoelastic zones. Here the boundary ¢
crosses 0 and for the subsequent increase of the deflection will tend to
0 on the right. The boundary d approaches 0 monotonically on the
right (remaining always more than c on the right). Having considered
a large number of cases, we conclude that when asymptotic stability
is absent, ¢ = +0 regardless of the sign of c¢(0).
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